
Quasineutral plasma models

R. F. Fernsler and S. P. Slinker
Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA

G. Joyce
Icarus Research Inc., Bethesda, Maryland 20824, USA

sReceived 13 September 2004; published 4 February 2005d

The quasineutral plasma model proposed by Langmuir more than 75 years ago is still widely used today and
is based on two approximations: charge neutrality and the Boltzmann relationship for electrons. However, the
Boltzmann relationship is unnecessary and is not always justified. Moreover, because the Boltzmann relation-
ship is fluid based, it compromises kinetic treatments and gives rise to troublesome singularities in the Bohm
condition. To overcome these limitations, more general quasineutral models are developed. Two of the models
are fluid based while the third is fully kinetic. The kinetic model and one of the fluid models lead directly to
the Bohm condition, but without the singularities seen earlier. Fluid simulations are presented to test and
compare the various approaches.
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I. INTRODUCTION

Many of today’s plasma models date back to the seminal
work done by Langmuirf1,2g more than 75 years ago. Lang-
muir recognized that plasmas are sufficiently good electrical
conductors that the electrostatic field in the interior can be
determined without solving Poisson’s equation. The plasma
frequencyvp, conductivitys, and Debye lengthlD are then
no longer relevant as scale parameters, so numerical solu-
tions can be formulated around macroscopic temporal and
spatial scales insteadf3,4g. Because the macroscopic and
plasma scales can differ by many orders of magnitude,
avoiding Poisson’s equation is not only useful but often es-
sential f5g. Poisson’s equation is needed, of course, to de-
scribe the highly charged sheaths that form at the boundaries.

Langmuir obtained the electrostatic field from the electron
density using the Boltzmann relationship, and he obtained
the electron density from the ion densities by setting the
charge density to zero in the plasma interior. Tonks and
Langmuir f2g showed the latter assumption is justified
as long as the electric field varies slowly over the
plasma screening distance. That property is the basis for
quasineutrality.

However, while the Boltzmann relationship simplifies
quasineutral modeling, it is unnecessary and not always
valid. It fails, for example, in plasmas that are strongly mag-
netized or highly electronegativef6g, and it fails in dc dis-
charges where Ohm’s law usually gives bettersand funda-
mentally differentd results. In addition, because the
Boltzmann relationship is fluid based, it compromises kinetic
analysis and leads to unphysical singularities in the Bohm
condition when the ions are treated kineticallyf7–10g.

Some of these limitations can be overcome by using the
electron momentum equation in place of the Boltzmann ap-
proximation, and this approach has been tried at various lev-
els of approximationf3,4,6g. However, even these models
fail in electron-freesion-iond plasmas, so we first derive a
field equation based on all the momentum equations. Like
Langmuir, we then replace Poisson’s equation with the as-

sumption that the charge density is small. While this model
has a wide range of validity, it reveals little about the screen-
ing ability of the plasma. The model also has no direct ana-
log in kinetic theory.

The major goal of the present work is to derive quasineu-
tral models, in both kineticf11g and fluidf12g forms, directly
from Poisson’s equationsGauss’s lawd. These models treat
all species equally and account for the plasma current in full.
While the fluid version is not necessarily more accurate than
previous models, it more clearly reveals the physical basis
and limitations of quasineutrality. The kinetic version is ac-
tually easier to derive, and it gives the quasineutral field in
terms of a set of velocity integrals. Both formulations lead
directly to the Bohm condition, and the integrals in the ki-
netic version are inherently nonsingular, unlike in previous
work f7–10g. Both models are derived by using the deriva-
tive of Gauss’s law to obtain a higher-order field equation in
terms of a plasma screening distance. The full equation re-
duces to an algebraic expression in regions where the field
varies slowly over the screening distance, and the validity of
the quasineutral expression can be assessed by examining the
terms dropped. Underlying the analysis is the assumption
that the plasma varies along one direction only and slowly in
time relative tovp and 4ps. To validate the overall concept,
we compare fluid solutions from the various quasineutral
models with the solution from Poisson’s equation. The solu-
tions differ, sometimes radically, from one another and from
traditional plasma theory.

The paper is organized as follows. After briefly reviewing
why sheaths form, a general set of fluid equations is pre-
sented. These equations serve as the basis for two different
quasineutral models, the second of which leads directly to a
Bohm condition similar to that derived by Riemannf9g.
A fully kinetic treatment is presented in Sec. III. In Sec. IV
we compare the various fluid models. We describe the ef-
fects of a perpendicular magnetic field in Appendix A and
give a closed-form solution for a magnetized discharge
in Appendix B. Characteristic time scales are discussed in
Appendix C.
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II. FLUID ANALYSIS

A. Background

To understand why plasmas charge and sheaths form, con-
sider a wall located atxw. If the wall emits few or no par-
ticles, kinetic theory indicates that each plasma speciesi
flows into the wall with a mean velocity satisfying

uisxwd ù xiÎgiTi

mi
. s1d

HereTi is the species temperaturesin units of energyd, mi is
the species mass,gi ,1 is a numerical factor determined by
the velocity distribution, andxi is a sticking coefficient lying
between zerostotal reflectiond and unity stotal absorptiond.
For charged species impinging on surfacesxi .1, while for
Maxwellian distributionsgi =1/2p. These values are used in
the analysis below for convenience.

In the absence of an electric field, conditions1d is an
equality and species arrive at the wall with flow velocitiesui

determined by the thermal speedsÎTi /mi. If the wall is an
insulator, the net current quickly approaches zero,oieqiniui
→0, while the plasma densitiesni adjust to allow for the
differences inui. The charge density is then nonzero,r
=oieqini Þ0, where −e is the electron charge andqie is the
charge of speciesi. The plasma charger generates an elec-
trostatic field that reduces but does not eliminate the differ-
ences inui.

As shown later, quasineutrality is justified only in regions
wherer is small relative to the total positive and total nega-
tive charge densities separately. This requirement can be ex-
pressed as

uru ! o
i

uqiueni . s2d

Condition s2d is well met in the interior of dense plasmas
swhere the flow velocities approach zerod, but it is met at the
boundaries only if the thermal velocitiesÎTi /mi are compa-
rable for all major species. Hence, while quasineutrality can
apply throughout ion-ion plasmasf13g, it invariably fails
near the boundaries of electron-rich plasmas, becauseTi /mi
is much larger for electrons than ions.

B. Fluid equations

Assume all parameters vary along directionŝ only. Tem-
porarily neglecting magnetic forces, the continuity and mo-
mentum equations for speciesi then reduce to

]ni

]t
+

1

A

]

]s
sniuiAd = Si s3ad

and

nimi
]ui

]t
+ nimiui

]ui

]s
= qieEni −

]sniTid
]s

− nimiuiRi , s3bd

respectively. HereSi is the net production rate for the spe-
cies,Ri is the rate at which the species loses momentum to
collisions of any type,E is the electric field, andAssd char-

acterizes the plasma area. For planar flowAssd=1, for cylin-
drical flow Assd=2ps, and for spherical flowAssd=4ps2. In
the latter two cases,s measures the distance from the center
of curvature.

Other variations inAssd are possible and can be produced,
for example, by using a longitudinal magnetic fieldBssdŝ that
varies withs. Indeed, a rapidly diverging magnetic field can
be used to acceleratef14,15g quasineutral plasmas to veloci-
ties above the ion sound speedcs.ÎTe/mp. HereTe is the
electron temperature andmp is the positive-ion mass. How-
ever, Eq.s3bd still applies, because the magnetic mirror force
alongŝ is small, as long as collisions keep the electron pres-
sure nearly isotropicf4g. Moreover, if the magnetic field is
instead perpendicular toŝ, the magnetic forces alongs can
often be incorporated simply by modifying the momentum-
loss ratesRi, as shown in Appendix A. Equationss3ad and
s3bd thus have a wide range of applicability.

The electric fieldE lies alongŝ as well in this case and
obeys Gauss’s law,

1

A

]sEAd
]s

= 4pr = 4peo
i

qini . s4d

However, as mentioned earlier, the goal of quasineutrality is
to replace this differential equation with an algebraic ap-
proximation in the plasma interior wherer is small. The next
several sections outline various approaches toward that goal.

C. Langmuir model

Langmuir replaced Eq.s4d with the Boltzmann relation-
ship for electrons,

eE= −
Te

ne

]ne

]s
, s5d

and he obtained the electron densityne from the ion densities
by settingr=0 in the plasma interior. However, while Eq.s5d
is widely used, it is not always justified. Let us therefore first
determine when Eq.s5d and the Langmuir model apply.

To understand the basis for Eq.s5d, assume] /]t=0 for
simplicity and use the last term in Eq.s3bd to compute the
current densitieseqiniui. Then set the sum of the current
densities equal to the total current densityJ= Ic/A, and ex-
tract the electric field to obtain

E =

Ic

A
+ o

i

eqi

miRi
F ]sniTid

]s
+

ni

2

]smiui
2d

]s
G

o
i

e2qi
2ni

miRi

. s6d

This equation is exact, given the assumptions made.
The net currentIc flowing through areaA is uniform in

steady state,]Ic/]s=0, and satisfies Ohm’s lawIc=sEA if
the plasma itself is uniforms] /]s=0d. Ohm’s law is a good
approximation when the flow is mobility limitedsas in dc
dischargesd but not when the flow is driven by particle pres-
sure insteadse.g., when Ic=0d. Rogoff f16g and others
f17,18g gave similar expressions forE, but withoutIc or the
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inertial terms. Any current flowing through the plasma then
affects the electron flow velocityue only, as is true in the
Langmuir model as well. According to Eq.s6d, however, the
current affects the fieldE and thus the velocities and densi-
ties of all species.

The electron temperature usually varies weakly withs and
satisfiesTe@meue

2 by virtue of Eq.s1d. Equations5d is there-
fore justified providedIc is small and electrons control both
the numerator and denominator of Eq.s6d. The denominator
equals the dc conductivitys and is controlled by electrons
only if

neme @ o
iÞe

uqiunimi , s7d

where mi ;ueqi /miRiu is the effective mobility of speciesi
and the subscripte denotes electrons. This condition is well
satisfied in unmagnetized, electropositive plasmas, because
in those plasmasni øne andmi ø10−2 me for all i Þe.

In electronegative plasmas, however, the ion densities can
exceedne, and conditions7d is then met only if the total
negative-ion density satisfiesnn! sme/midne for all i Þe.
Similarly, as outlined in Appendixes A and B, a magnetic
field B perpendicular toŝ increases the effective collision
frequencyRi far more for electrons than ionsf6g, and conse-
quently conditions7d is met only if the electron cyclotron
frequency is modest,Ve;eB/mec!Înenimi /me for all i
Þe. Hereni is the momentum-transfer collision frequency of
species i. The magnetic condition translates toB/P
,1 G/mtorr in electropositive gases like nitrogen, but a
stronger condition is needed if the gas is electronegative:
sB/Pdsnp/ned,1 G/mtorr. Here P is the equivalent gas
pressure at room temperature andnp is the total positive-ion
density.

The above limitations can be avoided by using Eq.s6d in
place of the Boltzmann relationships5d. Quasineutrality must
still be imposed, however, both to represent Poisson’s equa-

tion and to keep the charge density from growing unphysi-
cally f4g. To do so, compute the densities and velocities of all
species save one, using Eqs.s3d. Then use charge neutrality

nk = − qk
−1o

iÞk

qini s8ad

and current conservation

uk =
1

qknk
F Ic

eA
− o

iÞk

qiniuiG s8bd

to compute the density and velocity of the last speciesk.
Condition s8bd is not actually needed but simplifies the
calculations.

As an aside, we note that the Boltzmann relationship is
sometimes used for negative ions as wellf18–21g, even
though they do not satisfy a condition equivalent to Eq.s7d.
This treatment is nevertheless justified, provided the negative
ions are nearly collisionlessf18g and carry little current. The
underlying physics is therefore different and of little interest
here.

D. Different approach

Like the Boltzmann relationship, Eq.s6d gives no measure
of plasma screening, even though it applies in regions where
the plasma is non-neutral. To overcome that limitation, we
now derive a higher-order field equation. Time derivatives
are retained as well, mainly to allow for currents and volt-
ages that vary with time.

To derive the higher-order equation, first eliminate the
velocity gradients]ui /]s from Eqs.s3ad and s3bd. The den-
sity gradients are then given by

]ni

]s
=

qieEni − miuisniRi + Sid − ni
]Ti

]s
+ nimiui

2d lnsAd
ds

+ miSui
]ni

]t
− ni

]ui

]t
D

Ti − miui
2 . s9d

To eliminate those gradients, multiply by 4peqi and sum
over all i. Then combine the sum with the spatial derivative
of Gauss’s laws4d to produce

¹2E ;
]

]s
F 1

A

]sEAd
]s

G = 4p
]r

]s
= ks

2E − Qc, s10ad

where

ks
2 ; 4pe2o

i
S qi

2ni

Ti − miui
2D , s10bd

Qc ; 4peo
i

qiPi

Ti − miui
2 , s10cd

and

Pi ; miuisniRi + Sid + ni
]Ti

]s
− nimiui

2d lnsAd
ds

+ miSui
]ni

]t
− ni

]ui

]t
D . s10dd

These equations are as valid as Gauss’s law but are more
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complicated and of higher order. They thus have no imme-
diate utility.

In the plasma interior, however, the charge densityr is
small by assumption, so]r /]s is small as well. Dropping
that term from Eq.s10ad leaves the algebraic result

E =
Qc

ks
2 . s11ad

This expression, which is the key result of the paper, is jus-
tified in regions where the fieldE varies slowly over the
“screening distance”uksu−1 or slowly relative to changes in
ks

2. The general requirement is thus

U¹2E

E
U ! uks

2u s11bd

or

U 1

E

]

]s
¹2EU ! U ]ks

2

]s
U . s11cd

The last two conditions are the basis for quasineutrality.
To understand that basis better, consider the screening pa-

rameterks
2 as given by Eq.s10bd. This parameter is closely

related to the plasma Debye lengthlD defined by

lD
−2 ; 4pe2o

i

qi
2ni

Ti
, s12d

and indeedks
2=lD

−2 if the flow velocitiesui =0. If Eq. s10ad
were used to computeE, the screening distanceuksu−1 would
have to be resolved or at least taken into account. In the
plasma interior, however, the field varies so slowly that Eq.
s11ad is sufficient anduksu−1is no longer relevant as a length
scale. Note thatuksu−1 depends stronglyf22g on the flow ve-
locitiesui. For example, if the plasma is electron rich and the
ions are colder than the electrons,uksu−1approaches the ion
Debye length in the plasma middleswhereui →0d but ap-
proaches the electron Debye length near the boundaries
swhereui →csd.

Equations11ad was derived by assumingr and]r /]s are
small. To enforce this assumption, setr=0 for all s and
compute the density of one speciesk using Eq.s8ad as be-
fore. Moreover, because]r /]t=0, we can impose current
continuity ]Ic/]s=0, and again use Eq.s8bd to compute the
flow velocity uk of that species. These tactics stabilize and
accelerate the calculations. As indicated in Appendix C, cur-
rent continuity is justified as long as the plasma evolves
slowly relative to 4ps andvp, wheres is the dc conductiv-
ity and vp is the plasma frequency.

E. Singularities and the Bohm condition

Several singularities are evident in Eqs.s10bd–s11ad.
Some of the singularities are inherent to quasineutrality,
while others are easily eliminated and appear in the fluid
model only. The fundamental singularities are buried in Eq.
s6d as well, of course, and in that sense the present model is
more transparent. To understand the singularities, consider
the plot of ks

2sxd shown in Fig. 1sad for a planar plasma

consisting of electrons and two species of positive ions.
These results were obtained using Poisson’s equation and are
valid to ordermeue

2/Te!1, as discussed in Appendix C. Ac-
cording to Eqs.s10bd and s10cd, ks

2 and Qc diverge and
change sign when the flow velocity of a species equals its
thermal speedui = ±ÎTi /mi. In Fig. 1sad, for example, one
ion speciessAr+d reaches its thermal speed atx.1.7 cm,
while the secondsHe+d does so atx.2.32 cm; at each loca-
tion ks

2 diverges. Although this divergence is an artifact of the
fluid modelsas shown in Sec. IV Cd, conditions11bd is fully
met, and thus Eq.s11ad is “exact.” The thermal singularities
can therefore be eliminated by rewriting Eq.s11ad as

eE=

o
i

qiPip
jÞi

sTj − mjuj
2d

o
i
Fqi

2nip
jÞi

sTj − mjuj
2dG . s13d

Equation s13d is singular only if the denominator van-
ishes, because the numerator is now everywhere finite. How-
ever, the denominator can and does vanish at multiple loca-
tions in plasmas containing more than two species, because
ks

2=0 between each pair of thermal poles; for example,ks
2

=0 at x=2.2 and 2.9 cm in Fig. 1sad. Nevertheless, the field
E remains finitesand the plasma remains quasineutrald at all
but the last location, because the numerator of Eq.s13d van-

FIG. 1. Plasma produced by an external ionization sourcesan
electron beamd that is uniform from −0.5 to +0.5 cm in a gas com-
prised of 5 mtorr He and 5 mtorr Ar.sad Screening parameterks

2sxd.
sbd Electric field Esxd from Poisson’s equationssolid curved and
from Eq. s13d sdashed curved.
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ishes as well. To show thisf23g, assume the flow velocitiesui
increase monotonically with distances from the plasma
middle. The number of thermal poles is then no greater than
the number of speciesN, so ks

2 crosses zeroN−1 times or
lessf9g. The quasineutrality conditions8ad reduces the num-
ber of independent species fromN to N−1, and therefore the
number of independent species equals the number of singu-
larities in Eq.s13d . The quasineutral equations thus contain
enough degrees of freedom to eliminate all the singularities,
depending on the boundary conditions and other constraints;
see Appendix B. Quasineutrality fails, of course, once con-
ditions s11bd ands11cd fail, and the failure can be abrupt. In
Fig. 1sbd, for example, we compare the fieldE from Pois-
son’s equationssolid curved with that from Eq.s13d sdashed
curved. Except for the glitch atx=2.2 cm, the two plots
nearly overlap out to the sheath edge,xs>2.9 cm. Atxs the
quasineutral field diverges and quasineutrality fails. The
glitch at 2.2 cm occurs because the numerator and denomi-
nator of Eq.s13d pass through zero at slightly different loca-
tions when Poisson’s equation is used.

The Bohm condition represents the one true singularity in
Eq. s13d, and it consists oftwo requirements:

ks
2sxsd = 4pe2o

i

qi
2ni

Ti − miui
2 = 0 s14ad

and

Qcsxsd Þ 0. s14bd

These two requirements define the boundary within which
quasineutrality applies, and the first requirement reduces to
the Bohm condition as given by Riemannf9g when
meue

2/Te→0. Sincemeue
2!Te in practice, the main difference

between the two models is the addition of requirements14bd.
As already mentioned, that requirement eliminates all but
one of the locations where Eq.s14ad is satisfied.

Bohm f24g derived the equivalent of conditions14ad by
assuming that the plasma areaA and temperaturesTi are
constant and that no collisions occur inside the sheaths. In
that caseQc=0 in the sheaths and Eq.s10ad reduces to

d2E

ds2 → ks
2E. s15d

This equation shows that the fieldE grows monotonically
with s near the edge of a collisionless sheath only ifks

2sxsd
ù0. That requirement is a restatement of the Bohm condi-
tion f7,9,25g. The quasineutral model applies only if
d2E/ds2→0, however, and thus the quasineutral boundary
condition at the edge of a collisionless sheath isks

2→0.

III. KINETIC ANALYSIS

A. Plasma screening

Tonks and Langmuirf2g treated the ions kinetically but
treated the electrons as a fluid using the Boltzmann relation-
ship. Taking the electron temperatureTe to be constant, they
then expanded Poisson’s equation from the plasma middle to
obtain

¹2f = 4psene − riond = 4pFeneo expSef

Te
D − rionG

= 4pseneo− riond + S4pe2neo

Te
Df + ¯ . s16d

Here f is the electrostatic potential measured from the
middle, neo is the electron density in the middle, andrion
is the ion charge density. The term¹2f is negligible in re-
gions wheref varies slowly over the electron Debye length
lDe=ÎTe/4pe2neo, and in those regions quasineutrality is
justified f26g andefssd.Te lnfrionssd /eneog.

B. Fully kinetic model

A fully kinetic model can be obtained by dropping the
Boltzmann relationship as before. Assuming the electric field
is along ŝ and neglecting the magnetic field for simplicity,
the kinetic Boltzmann equation for speciesi is given by

] f i

]t
+ ys

] f i

]s
+

qieE

mi

] f i

]ys
= Ci . s17d

Here the velocity distributionsf i depend on the longitudinal
velocity ys, the transverse velocityy', the spatial coordinate
s, and timet only. The velocity distributions and collision
cross sections determine the collision operatorsCi.

Gauss’s law is given in this case by

1

A

]sEAd
]s

= 4prss,td = 4peo
i

qiE E d2y'E
−`

`

dysf i .

s18d

Taking the derivative of this equation and obtaining]f i /]s
from Eq. s17d, we find that

¹2E = 4peo
i

qiE E d2y'E
−`

`

dys
] f i

]s

= ks
2E − Qc, s19ad

where the screening and source parameters are now given by

ks
2 = − 4pe2o

i

qi
2

mi
E E d2y'E

−`

`

dys
1

ys

] f i

]ys
s19bd

and

Qc = − 4peo
i
E E d2y'FE

−`

`

dys
Ci

ys
−

]

]t
E

−`

`

dys
f i

ys
G .

s19cd

Equationss19d are the analogs of Eqs.s10d and again yield
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E → Qc

ks
2 , s20d

in regions where the quasineutrality conditionss11bd and
s11cd are met. As before, the time derivatives in Eq.s19cd are
usually important only if the current varies with time.

Equationss19bd–s20d constitute a complete, kinetic model
for the quasineutral electric field. While each species is nor-
mally followed separately, quasineutrality must again be im-
posed, because Eq.s20d applies only in that limit. The den-
sity of one species should therefore be renormalized to
satisfy Eq.s8ad before using Eqs.s19bd ands19cd. However,
the current-continuity conditions8bd is impracticalsand un-
necessaryd in this case, because the velocity distributions are
difficult to adjust. Hence, specify the current only at the
boundaries, using a procedure like that outlined in Ref.f4g
for collisionless sheaths. In particular, the potential drop
across a collisionless sheath determines whether particles of
a given charge and velocity pass through the sheath or reflect
off it. Particles reflecting off the sheath reenter the quasineu-
tral plasma with their velocities reversed, and thus the poten-
tial at each sheath can be adjusted until the total plasma
current equalsIcstd. The velocity distributions inside the
plasma respond to those at the boundaries through the con-
vective term in Eq.s17d , so ]Ic/]s→0 automatically. Note
that this method yields the voltage across each sheathsand
thus the final ion energiesd without explicitly modeling the
sheathf4g.

C. Bohm condition

The velocity distributionsf i are positive, and they fall off
faster thanys

−1 at ys= ±` since the plasma densities are finite.
In addition, the distributions are analytic atys=0 due to
smoothing by collisions and other processes. The derivatives
]f i /]s and collision operatorsCi have the same properties,
and thusks

2 andQc are finite everywhere, despite the pole in
Eqs.s19bd and s19cd. Hence, unlike the fluid model, the ki-
netic model is singularonly when the Bohm condition is
met:ks

2=0 andQcÞ0. As before, this condition applies at the
boundaries only, if at all.

Previous kinetic expressions for the Bohm condition are
similar, except the poles are one order higherf7–10g. For
example, Riemannf9,10g obtained the form

o
iÞe

qi
2

mi
E E d2y'E

−`

`

dys
f i

ys
2 =

1

me
E E d2y'E

−`

`

dys
1

ys

] fe

]ys
.

This form confirms the kinetic result obtained earlier by Har-
rison and Thompsonf7g, and it can be derived by integrating
Eq. s19bd by parts fori Þe. Riemannf10g showed that this
form of the Bohm condition is met only if the positive ions
acquire a mean velocity no less than the sound speedcs.
However, integration by parts is justified only iff i =0 at ys
=0, and that requirement is met only for species that are
driven toward the walls by the fieldE and are neither pro-
duced nor suffer collisions within the sheaths. For all other
speciessand for actual sheaths in generald, f i Þ0 atys=0 and

the integrals should then be left in their original formswith a
simple pole onlyd.

IV. SIMULATIONS

To test the various models, we compared the electric field
as given by Eqs.s5d, s6d, ands13d with that from Poisson’s
equation for three planar problems inx. The walls in each
case were located atx= ±3 cm and were held at zero poten-
tial. To produce strong spatial variations in the electric field
sand to avoid the eigenvalue problem discussed in Appendix
Bd, we took the gas ionization rate to be constant from −0.5
to +0.5 cm and zero elsewhere. The rate was based on the
ionization generated by a 3 keV electron beamf27–31g
propagating iny. For beam-produced plasmas, the electron
temperatureTe ranges from,0.5 eV in molecular gases to
,1 eV in rarefied noble gasesf28–30g, and these values
were used in the simulations. The collision frequencies and
rate coefficients were derived from data compiled by Dutton
f32g, Ellis et al. f33g, and Christophorou and Olthofff34g.

Equationss3d were first solved as functions of time using
Poisson’s equation, conditions1d, and the adjustments de-
scribed in Appendix C. The code was run until equilibrium
was reached,Ic→0. Resolving the sheath required a small
grid sizeDx!lDe, which in turn required a small time step
Dt,lDe

Î2pme/Te, based on the Courant criterion. HerelDe

is the electron Debye length andÎTe/2pme is the electron
flow velocity at the walls. Additional restrictions onDt are
discussed in Appendix C.

We next inserted the ion solutions obtained with Poisson’s
equation into Eqs.s8d to determine the quasineutral electron
density nesxd and flow velocity uesxd. These values were
close to the original values, except near the walls. The new
values were then inserted into Eq.s5d, s6d, or s13d to deter-
mine the quasineutral fieldEsxd. Results from Eqs.s6d and
s13d were largely indistinguishable, so only those from Eq.
s13d are shown.

The quasineutral models were also run in time, but with
limited success. In particular, solutions based on Eq.s13d
were often unstable in plasmas containing more than two
species, because of the singularities atks

2=0. In simpler plas-
mas the solutions were stable and agreed well with the solu-
tions from Poisson’s equation up to the sheath edge. Solu-
tions based on Eq.s5d or s6d were more robust in general, but
those from Eq.s5d did not always agree with the solutions to
Poisson’s equation.

A. Two species of positive ions

The example cited in Sec. II E describes a plasma nomi-
nally formed in a mixture of 5 mtorr Ar and 5 mtorr He. The
magnetic field was zero,Te was 1 eV, and the temperatures
of Ar+ and He+ were set to 0.25 eV to highlight the singu-
larities. Apart from the glitch at 2.2 cmswhereks

2=0d, the
electric field from Eq.s13d agreed well with that from Pois-
son’s equation up to the sheath edge,xs.2.9 cm; see Fig.
1sbd. The field from Eq.s5d agreed equally well in this case
but without the glitch.

FERNSLER, SLINKER, AND JOYCE PHYSICAL REVIEW E71, 026401s2005d

026401-6



In the simulation, the He+ ions were lighter but had a
higher collision frequency than Ar+. The flow velocityui was
therefore greater for He+, but the drift energymiui

2/2 was
larger for Ar+. As a result, the Bohm condition was met when
ui .ci for Ar+ but ui ,ci for He+, where ci

;ÎsTe+Tid / sme+mid is the sound speed of speciesi. This
result is consistent with claims made by Severnet al. f35g
and Franklinf36g.

B. Electronegative plasma

Now consider two problems where the Boltzmann rela-
tionships5d is not justified. In the first problem the gas con-
sisted of 1 torr He plus a trace amounts,0.1%d of the
highly attaching gas SF6. The magnetic field was again zero,
Te was 0.5 eV, and the ion temperatures were set to the gas
temperature 0.025 eV. To simplify the calculations, we ne-
glected charge exchange, took ion-ion recombination as the
sole loss mechanism, and assumed the plasma consisted of
electronssed and He+ spd and SF5

−snd ions only. Given those
assumptions, most electrons attached to form negative ions
before reaching the walls, but not before generating an am-
bipolar electric field that pushed negative ions toward the
plasma middle and positive ions toward the walls. The nega-
tive ions therefore accumulated in the middle until they re-
combined with positive ions. As a result, the ion densities
became largef17,18,37g in the middle:nn.np,50ne. See
Fig. 2sad.

Using the ion densities and velocities obtained with Pois-
son’s equation, we recomputed the electric field using Eqs.
s5d ands13d. In Fig. 2sbd the field from Eq.s13d sdiamondsd
agrees well with that from Poisson’s equationssolid curved
up to the sheath edge,xs.2.9 cm, but the field from Eq.s5d
sdot-dashedd is too large by nearly 30%. The Boltzmann re-
lationshipsand thus the Langmuir modeld worked poorly in
this case because the electronegativity was large:nn/ne
,0.5me/mp,50, wheremp is the mobility of He+. Further-
more, using a Boltzmann relationship for the negative ions,
eE=−Tnfd lnsnnd /dxg, gives a field that is nearly two orders
of magnitude too small. The Boltzmann relationship is there-
fore not justified forany species in this example.

The ion-neutral collision frequency was so high in this
case that the ion flow velocities remained below the sound
speed for allx. The Bohm condition was therefore never met
and thus is unsuitable as a quasineutral boundary condition.

C. Magnetized plasma

The Boltzmann relationship failed more dramatically yet
for the last problem presented. In this case a magnetic field
of 100 G was applied alongy in 10 mtorr of pure He. The
plasma electron temperature was 1 eV and the ion tempera-
ture was 0.025 eV. The magnetic field confined the electrons
so strongly that they diffused more slowly than the ions,
even though the ions were far heavier and colder. As a result,
the ambipolar electric fieldE was negative rather than posi-
tive in the plasma middlef6g, andE became positive near the
walls only after ion inertia became important. The plasma
densities therefore peaked as usual in the plasma middle in

Fig. 3sad, but the electrostatic potentialf peaked off axis and
remained well belowTe/e in Fig. 3sbd.

Using the ion density and velocity obtained with Pois-
son’s equation, we again recomputed the electric field from
Eqs. s5d and s13d. In Fig. 3scd the field from Eq.s13d sdia-
mondsd agrees with that from Poisson’s equationssolid
curved, but the field from Eq.s5d sdot-dashed curved is more
than two orders of magnitude too largeand has the wrong
sign. This failure results from the inability of the Boltzmann
relationshipsand thus the Langmuir modeld to account for
the momentum lost by electrons. See also the analytic solu-
tion given in Appendix B for a related problem.

The magnetic field kept the ion flow velocity below the
sound speed for allx, as in the previous example. Hence, the
Bohm condition was never met and is again not suitable as a
quasineutral boundary condition.

V. SUMMARY

Three models were presented to generalize the original
quasineutral plasma model proposed by Langmuir. Lang-
muir’s model is based on the Boltzmann relationship for
electrons, but that approximation fails in dc discharges and in
plasmas that are highly magnetized or electronegative. The

FIG. 2. Beam-produced plasma in 1 torr He plus,0.1%SF6.
sad Density of positive ionssdashed curved, negative ionssdot-
dashed curved, and electronsssolid curved. sbd Esxd from Poisson’s
equationssolid curved, from Eq. s5d sdot-dashed curved, and from
Eq. s13d sdiamondsd.
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models presented here avoid these limitations and are based
on two different approaches. The first approach used the mo-
mentum equations of all species, not just electrons, to derive
a general field equation. Charge neutrality was then imposed,
as in the Langmuir model. The second approach used
Gauss’s law to obtain a higher-order field equation in terms
of a plasma screening distance. Quasineutrality was then im-
posed by assuming the field varies slowly over the screening
distance. The second approach does not require fluid equa-
tions and was used to derive a fully kinetic model, as well as
another fluid model. Both of these models lead directly to the
Bohm condition, but without the singularities seen in previ-
ous kinetic analyses. However, the last two models contain
removable singularities that must be treated properly to ob-
tain stable numerical solutions.

To test the various approaches, fluid solutions were first
obtained using Poisson’s equation. The field from Poisson’s
equation was then compared to that from the quasineutral
models. The field from the two fluid models presented here
agreed well with Poisson’s equationsup to the sheath edged
in all cases, but the field based on the Boltzmann relationship
did not. Indeed, even the sign of the field from the Boltz-
mann relationship was wrong in some cases.
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APPENDIX A: EFFECTS OF A PERPENDICULAR
MAGNETIC FIELD

Consider a weakly ionized plasma that varies withx only
and is embedded in a uniform magnetic fieldBŷ. Assume for
simplicity that particles are created with zero net velocity on
averagesi.e., randomly in all directionsd and are destroyed
independent of velocity. Particle sources then add particles
but not momentum to the ensemble, so the mean momentum
miui of the species as a whole decreases. The sinks, on the
other hand, remove an average momentum equal tomiui per
particle destroyed, and thus the mean momentum of the en-
semble is unchanged. Hence, only the sources directly affect
miui. Dropping the subscripti for convenience and assuming
steady state, the momentum equations alongx and z can
therefore be written as

ux
dux

dx
=

qeE

m
−

1

mn

dsnTd
dx

− Vuz − sn + Sc/ndux sA1d

and

ux
duz

dx
= Vux − sn + Sc/nduz, sA2d

respectively. Hereux is the flow velocity in thex direction,uz
is the flow velocity in thez direction,n is the momentum-
transfer collision frequency,V=qeB/mc is the cyclotron fre-
quency, andSc is the volumetric creation rate. We assume
there is no flow alongy.

FIG. 3. Beam-produced plasma confined by a
100 G magnetic field in 10 mtorr He.sad Density
of positive ions sdashed curved and electrons
ssolid curved. sbd Potentialfsxd. scd Esxd from
Poisson’s equationssolid curved, from Eq. s13d
sdiamondsd, and from Eq.s5d sdot-dashed curved
multiplied by 10−2.
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In quasineutral regionsux is less than the sound speedcs,
so the left-hand side of Eq.sA2d can be dropped provided
d/dx!n /cs. This condition is usually well met for electrons
f31g sand even for ions at gas pressures above 100 mtorrd.
EquationsA2d then reduces touz→ fV / sn+Sc/ndgux, while
Eq. sA1d reduces to

ux
dux

dx
→ qeE

m
−

1

mn

dsnTd
dx

− Rux. sA3d

Here the effective momentum-loss rate alongx is defined as

R; n +
Sc

n
+

V2

n + Sc/n
. sA4d

The magnetic field thus increasesR appreciably if the cyclo-
tron frequency is large,

V ù sn + Sc/nd. sA5d

APPENDIX B: CLOSED-FORM EXAMPLE

To illustrate the limitations of the Langmuir model, con-
sider an ambipolar dischargesIc=0d consisting of electrons
sed and one species of singly ionized, positive ionsspd. Ne-
glecting recombination, the net production rate for both spe-
cies is given bySi =aene, where the electron avalanche rate
ae is taken as constant. If the discharge varies withx only but
resides in a uniform magnetic field alongŷ, the electrons lose
momentum alongx at a rate given byRe=ne+ae+Ve

2/ sne

+aed, according to Appendix A. Herene is the electron col-
lision frequency andVe is the electron cyclotron frequency.
The magnetic field increases the ion momentum-loss rate as
well, but the increase is much less because the ion cyclotron
frequency is small,Vp!Ve. The magnetic field therefore
reduces the effective electron mobilityme;e/meRe far more
than the ion mobilitymp;e/mpRp.

The densities and velocities of the electrons and ions are
equal in the quasineutral interior,ne=np;n and ue=up;u.
Consequently, Eqs.s3d and s13d can be combined in steady
state into a single, first-order differential equation

du

dx
=

aecs
2 + Rtu

2

cs
2 − u2 . sB1d

Here cs;ÎsTe+Tpd / sme+mpd is the sound speed and
Rt;smeRe+mpRpd / sme+mpd is the total momentum-loss
rate.

Because its numerator is positive definite, Eq.sB1d is sin-
gular when the Bohm condition is met,u= ±cs. Using that
condition as a boundary condition atx= ±xs, we can imme-
diately integrate Eq.sB1d to produce the transcendental
solution

xsud =
cs

Rt
FSRt + ae

ÎaeRt
D tan−1S u

cs

ÎRt

ae
D −

u

cs
G . sB2d

The two boundary conditions make the problem overdeter-
mined, however, and thereforeae is not a free parameter but

an eigenvalue determined by settingxs±csd= ±xs. Using the
continuity equation, one can show that the plasma density is
given by

nsud = noS aecs
2

aecs
2 + Rtu

2DsRt+aed/2Rt

, sB3d

whereno is the plasma density atx=0.
SolutionssB2d and sB3d apply to the Langmuir model as

well, but only in the limit thatme→0 and Rt→Rp. These
restrictions arise because the Langmuir model is based on the
Boltzmann approximation and thus cannot account for the
momentum lost by the electrons. As a result, the Langmuir
model overestimates both the ionization rateae and the
power needed to maintain a magnetized plasma of densityno.
The errors are large ifB/P.3 G/mtorr, and even the sign of
the electric field is wrong ifB/P is much larger yet. In the
latter case, the Bohm condition is no longer valid as a bound-
ary condition, as discussed in Sec. VC.

APPENDIX C: NUMERICAL STABILITY

Maxwell’s equations conserve the sum of the conduction
and displacement currents, and therefore in media that vary
along a single directionŝ only,

FJss,td +
1

4p

]E

]t
GAssd = I tstd. sC1d

Here the total currentI tstd depends on timet but not location
s. SettingJ=sE reduces Eq.sC1d to

]E

]t
+ 4psE =

4pI tstd
Assd

. sC2d

This equation shows that the field relaxes at a rate 4ps,
which indicates that explicit field solvers are stable only
if the time step satisfiesDt, s4psd−1. More generally
J=eSisqiniuid in plasmas, where]snimiuid /]t=qieniE+¯.
Taking the time derivative of Eq.sC1d then gives

]2E

]t2
+ vp

2E + ¯ =
4p

Assd
dIt
dt

, sC3d

wherevp
2=4pe2Sisqi

2ni /mid is the plasma frequency squared.
Hence, when time derivatives are retained in the velocity
equations, explicit field solvers are stable only if the time
step additionally satisfiesDt,vp

−1. These restrictions apply
to Poisson’s equation as well, because it is equivalent to Eq.
sC1d when the field is set toE=−]f /]s. Typically 4ps
,103ne/P in unmagnetized plasmas, whilevp.63104Îne.
Here ne is the electron density in cm−3 and P is the gas
pressuresat room temperatured in mtorr.

Plasmas diffuse to the walls, however, in a timetd
.xw

2 /Da, where xw is the distance to the walls andDa
,106/P is the ambipolar diffusion coefficient in cm2/s. The
number of time steps needed to reach equilibrium is there-
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fore often excessive:Ns. s4ps+vpdtd.10−3nexw
2 ,1011 if,

for example,ne=1012 cm−3 andxw=10 cm.
To reduce the number of times steps, several changes

were made in the simulations reported. The first was to solve
Poisson’s equation using a semi-implicit scheme like that
proposed by Ventzeket al. f38g The second was to drop
electron inertia from the left-hand side of Eq.s3bd, which is
justified to ordermeue

2/Te!1. Ions alone then contribute to
the plasma frequencyvp appearing in Eq.sC3d. To further
accelerate the calculations, the ion densities were kept under

1011 cm−3 and the walls were moved in toxw= ±3 cm.
The quasineutral models drop the displacement current, so

the conduction currentIc=JA is constant instead. Only the
source rates, collision frequencies, and Courant condition
then limit Dt. Moreover, the grid spacingDx can be much
larger than the Debye length, while the Courant condition
falls to Dt,Dx/cs. Here the sound speedcs is much less than
the electron speedÎTe/2pme at the walls. The net result is
that quasineutrality greatly reduces the stability restrictions
on the time stepDt.
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